584 research outputs found

    The Kepler Catalog of Stellar Flares

    Get PDF
    A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ~103510^{35} erg. The net fraction of flare stars increases with g−ig-i color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ~0.03 is found. A power law decay in flare activity with Rossby number is found with a slope of -1, shallower than typical measurements for X-ray activity decay with Rossby number.Comment: 15 pages, 8 figures, ApJ accepted. Code is available online: http://github.com/jradavenport/appaloos

    Detecting Differential Rotation and Starspot Evolution on the M dwarf GJ 1243 with Kepler

    Get PDF
    We present an analysis of the starspots on the active M4 dwarf GJ 1243, using four years of time series photometry from Kepler. A rapid P=0.592596±0.00021P = 0.592596\pm0.00021 day rotation period is measured due to the ∼\sim2.2\% starspot-induced flux modulations in the light curve. We first use a light curve modeling approach, using a Monte Carlo Markov Chain sampler to solve for the longitudes and radii of the two spots within 5-day windows of data. Within each window of time the starspots are assumed to be unchanging. Only a weak constraint on the starspot latitudes can be implied from our modeling. The primary spot is found to be very stable over many years. A secondary spot feature is present in three portions of the light curve, decays on 100-500 day timescales, and moves in longitude over time. We interpret this longitude shearing as the signature of differential rotation. Using our models we measure an average shear between the starspots of 0.0047 rad day−1^{-1}, which corresponds to a differential rotation rate of ΔΩ=0.012±0.002\Delta\Omega = 0.012 \pm 0.002 rad day−1^{-1}. We also fit this starspot phase evolution using a series of bivariate Gaussian functions, which provides a consistent shear measurement. This is among the slowest differential rotation shear measurements yet measured for a star in this temperature regime, and provides an important constraint for dynamo models of low mass stars.Comment: 13 pages, 7 figures, ApJ Accepte
    • …
    corecore